If $\alpha ,\beta ,\gamma $ be the angles made by a line with $x, y$ and $z$ axes respectively so that $2\left( {\frac{{{{\tan }^2}\,\alpha }}{{1 + {{\tan }^2}\,\alpha }} + \frac{{{{\tan }^2}\,\beta }}{{1 + {{\tan }^2}\,\beta }} + \frac{{{{\tan }^2}\,\gamma }}{{1 + {{\tan }^2}\,\gamma }}} \right) = 3\,{\sec ^2}\,\frac{\theta }{2},$ then $\theta =$
$\frac{\pi }{{12}}$
$\frac{\pi }{{10}}$
$\frac{\pi }{{6}}$
$\frac{\pi }{{3}}$
$2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ then $x = $
If $tan(\pi sin \theta)$ $= cot(\pi cos \theta)$, then $\left| {\cot \left( {\theta - \frac{\pi }{4}} \right)} \right|$ is -
The smallest positive angle which satisfies the equation $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$, is
One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval
If $m$ and $n$ respectively are the numbers of positive and negative value of $\theta$ in the interval $[-\pi, \pi]$ that satisfy the equation $\cos 2 \theta \cos \frac{\theta}{2}=\cos 3 \theta \cos \frac{9 \theta}{2}$, then $mn$ is equal to $.............$.